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MAXIMUM LIFT-TO- DRAG RATIOS 

OF SLENDER, FLAT- TOP, HYPERSONIC BODIES (':') 

PART 1 

bY 
(4:;:x:) 

ANGEL0 MIELE ("'"') and DAVID G. HULL 

SUMMARY 

An investigation of the lift-to-drag rat io  attainable by a s lender ,  flat-top, homo- 

thetic body flying a t  hypersonic speeds is presented under the assumptions that the 

p re s su re  distribution is Newtonian and the skin-friction coefficient is constant. 

It is shown that a value of the thickness ratio exists such that the lift-to-drag 

ra t io  is a maximum; this particular value is such that the friction drag is one-third 
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of the total drag. The subsequent optimization of the longitudinal and t ransversal  

contours is reduced to  the  extremization of products of powers of integrals related 

rn the lift, the pressure  drag, and the  skin-friction drag .  For  the longitudinal 

contour, the variational approach shows that a conical solution is the best .  For  

the transversal  contour, a triangular configuration satisfies the Euler equation 

for every cross -sectional elongation ratio u; it satisfies the Legendre condition 

for  0 c u c 0.65 but violates it in the neighborhood of the plane of symmetry for  

0.65 5 u 5 1. The lift-to-drag rat io  of the optimum conical body of tr iangular 

c ros s  section increases as the elongation ratio of the c ros s  section decreases;  fo r  

- 3  a friction coefficient C = 10 , the highest attainable lift-to-drag rat io  is E = 5.29. f 
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1. INTRODUCTION 

In a previous report  (Ref. l),  an investigation of the lift-to-drag rat io  attainable 

by a slender,  flat-top, homothetic body a t  hypersonic speeds was presented under 

the assumption that the pressure  distribution is Newtonian and the skin-friction 

coefficient is constant. Direct methods were employed,and the analysis was confined 

to the class  of bodies whose longitudinal contour is a power law and whose t ransversal  

contour is semielliptical o r  triangular. For these special bodies, the lift-to-drag 

ratio depends on three parameters :  the thickness ratio,  the exponent of the power 

law, and the elongation ratio of the cross  section. Therefore,  by means of the ordinary 

theory of maxima and minima, the combination of parameters  maximizing the lift-to: 

d rag  ratio can be found 

In this report ,  the limitations set forth in Ref. 1 a r e  removed and the indirect 

methods of the calculus of variations are employed in order  to determine the optimum 

longitudinal and t ransversal  contours. The hypotheses employed a r e  as follows: (a) a 

plane of symmetry exists between the left-hand and right-hand sides of the body; (b) the 
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uppc’r surface of the body is flat (reference plane); (c) the base plane is perpendicular 

to both the plane of symmetry and the rcferencc plane; (d) the body is slender in the 

longitudinal sense, that is ,  the square of the slope of any meridian contour is small  

with respect t o  one; (e) the body is homothetic, in the sense  that each c ross  section 

is geometrically s imi la r  to the base c r o s s  section and has the s a m e  orientation; (f) the 

f ree-s t ream velocity is perpendicular to the base plane and, therefore ,  is parallel  

to the line of intersection of the plane of symmetry and the reference plane; (g) the 

pressure  coefficient i s  twice the cosine squared of the angle formed by the f ree-s t ream 

velocity and the normal to  each surface element; (11) the skin-friction coefficient is 

constant; and (i) the Contribution of the tangential forces to the lift is negligible with 

respect to the contribution of the normal forces ,  
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2 .  DRAG AND LIFT 

We consider the  c lass  of flat-top bodies and define two coordinate systems 

(Fig. 1): a Cartesian coordinate system Oxyz and a cylindrical coordinate system 

Oxre.  For the Cartesian coordinate system, the o r i g n  0 is the apex of the body: 

the x-axis is the intersection of the plane of symmetry and the reference plane, 

positive toward the base; the z-axis is contained in the plane of symmetry,  perpendi- 

cular  to the x-axis,  and positive downward; and the y-axis is such that the xyz-system 

is right-handed. For the cylindrical coordinate system, r is the distance of any 

point from the x-axis ,  and 0 measures the angular position of this point with respect 

to the xy-plane. 

Next, we focus our attention on those bodies r ( x ,  6) such that any t ransversal  

contour is geometrically s imilar  to that of the base and has the same orientation. The 

geometry of these homothetic bodies i s  given by (Ref. 1) 

where 4, denotes the length and where 
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are  the thickness ratio and !-nc :'engation rat io ,  respectively; a lso,  5 = x/t is a 

nondimensional abscissa,  A ( 5 )  a fu.ic:lon describing the longitudinal contour such 

that 

A(0 )  = 0 ,  A (1) = 1 

and B (  6) a function describing the t ransversal  contour such that 

B(0)  = 1 ,  B(rr/2) = u 

With this understanding and in the light of the hypotheses of the introduction, the d rag  

and the lift can be rewritten as (Ref. 1) 

L/qL2 = T3 I 3  J3 

In Eqs.  (S), the positive quantities 11 , 1 2 ,  13 are defined as 

(4) 

(5) 
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are defined as 1 , J2 ’ J, where A = dA/dC. Also, the positive quantities J 
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where 

rn/2r 4 2 - 2  1 
3 io J 

K = 4 B /(B + B  ) (Bsin 0 - G C O S  0) de 

and B = dB/d0. 
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(6 )  

(7) 



8 

: 3 .  - LIFT-TO- DRAG RATIO 

From thz previous formulas, i t  appears that - -  if the length 4, the thickness 

ratio 7 ,  the longitudinal contour A (F), and the t ransversal  contour B(9 )  are given 

- - t he  drag  and the lift can b2 evaluated from Eqs . (5) through ( 8  ). Once these 

quantities are known, one can determine the aerodynamic efficiency o r  l if t- to-drag 

ratio 

E = L/D 

which, in the light of Eqs.  (5), can be written as 

(9) 
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4. OPTIMUM THICKNESS RATIO 
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We now assume that the  longitudinal 

B(0) are arbi t rar i ly  prescribed, and study 

contour A(5) and the t ransversal  contour 

the effect of the thickness ra t io  ,on the 

lift-to-drag rat io  (10). Clearly, the  lift-to-drag rat io  is a n  extremum when the 

thickness ra t io  satisfies the relationship 

E,=O 

whose explicit form 

means that the friction drag is one-third of the total  drag. The associated l if t- to-drag 

ra t io  is given by 

and is a maximum owing t o  the fact that 
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5 .  OPTIMUM LONGITUDINAL CONTOUR 

Next, we consider bodies optimiz,xl with respect to  the thickness ratio 7 ,  assume 

that the transversal  contour B( iJ )  is arbi t rar i ly  prescribed, and study the effect of 

the longitudinal contour A (E) on the lift-to-drag ratio ( 13). Since the l if t- to-drag 

ratio depends on the longitudinal contour through the expression 

I = I3 3 2  / I l  I 2  

we formulate the following p:oblem: "ln the class  of functions A(<)  which satisfy the 

end conditions (3) ,  find that particular function which extrcmizes  the functional (15), 

where the integrals I l  , 1 2 ,  I3 are defined by Eqs.  (6). " 

The functional (15) is a product of powers of  integrals whose end points are 

fixed and is governed by the theory se t  forth in Ref.  2. In this reference,  it is shown 

that the previous problem is equivalent to that of extremizing the integral 

where the fundamental function is defined as 
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- 2  -3  F =A(A - X A - X2)  1 

and the undetermined, constant Lagrange multipliers a r e  given by i 
Xl = 213/311 , X2 = 13/312 

Since the fundame.ita1 iuiictjliii h e s  n o t  contain the independent variable 

explicitly, standard methods of the calculus of variations show that the Euler 

equation 

d F . / d 5  - F = O  A A 

admits  the following first integral (see, for instance, Chapter 1 of Ref. 3): 

F -  A F .  = C  A 

whose explicit form is 

(19) 

- 3  - 2  A(2X1A - A  - X ) = C  2 
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Upon integrating Eq. (21) over the range 0, 1 and accounting for the definitiow (6), 

we obtain the relationship 

2 x 1  - 1 3 - X I  2 2  = c  
1 1  

which is consistent with Eqs . (18) providing the integration constant has the value 

c = o  

Consequently, the differentia equation of the extrema1 a r c  (21) becomes 

- 3  e2 
2X1A - A  - X 2 = O  

and implies that 

1 A = C  

where C is a constant. Upon integrating this differential equation, we obtain 
1 

the relationship 

1 I 
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A = C  F + C  
1' 2 
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where, becausc of the end conditions ( 3 ) ,  the constants take the values 

c = 1  , c = o  
1 2 

In conclusion, the optimum longitudinal contour is described by 

A = ?  

and, therefore,, is conical. For this  cone, the integrals (6) take the values 
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and the Lagrange multipliers (18) are given by 

X = 2/3 , X = 1/3 1 2 

AAR- 10 

Finally, the optimum thickness ratio (12) and the lift-to-drag ratio (13) become 

(31) 
3 -  3 3 -  

T/ ,/Cf = d K 2 / K 1  , E./Cf = (2/3) 

Incidentally, the solution obtained maximizes the lift-to-drag ratio, owing to  the 

fact that 

= 2A(1-3X1A) = -2tj: 0 FAA 
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6 .  OPTIMUM TRANSVERSAL CONTOUR 

Finally, wc consider configurations optimized with respect t o  the thickness 

ratio 7 and the longitudinal contour A ( < ) ,  and study the effect of the t ransversal  

contour B (9) on the lift-to-drag rat io  (31 -2) .  Since the lift-to-drag rat io  depends 

on the transversal  contour through the expression 

K = K33/K12 K 2  

we formulate the following problem: "In the class  of functions B (9) which satisfy 

the end condtions (4), find that particular function which extremizes the functional 

(33 ) ,  where the integrals K1 , K 2 ,  K3 are defined by Eqs . (8). " 

For each gven  elongation rat io  u, the functional ( 3 3 )  is a product of powers 

of integrals whose end points are fixed and is governed by the theory set forth in 

Ref. 2 .  Therefore, the previous problem is equivalent to that of extremizing the 

integral 
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where the fundamental function is defined as 

F = [B 4 2  /(B + B2)] (B sin F) - B cos 0) - Xl[B 6 2  /(B + B2)] - X2r2/rr+(B2 + g)lj2] 

and the undetermined, constant Lagrange multipliers are given by 

2 X1 = 2K /3K1 , X = K3/3K 3 2 

The extrema1 solution is described by the Euler equation 

dF./dO - F = O  B B 

which, in explicit form,  is given by 

.. 
B =  

XIP1(B, B) + A2P2(B, B) + P3(0, B, B) 

XIQ1(B, B) + X2Q2(B, 6) + Q3(O7 B, 6) 

where 

4 4  2 . 2  -4  PI = 2 B  (2B +7B B + 9 B  ) 

2 - 2  3 / 2  P2 = (B2 + 2B2) (B + B ) 

P = -2B2 [(B4 + 5B2B2 + 8B4) B s in  8 + (B4 + B2B2 - 4B4) B C O S  e ]  
3 

(35) 

(37) 
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and 

5 . 2  2 
Q, = 2 B  (3B - B ) 

2 3/2 Q~ = B ( B ~  + B  ) 

There  is no method known to these authors for  obtaining the general integral of 

this differential equation and, as a consequence, numerical integration is necessary.  

Prior t o  undertaking this t a s k ,  these authors have investigated the possibility that 

the family of triangular contours described by 

B = u/(sin 0 i. u cos 0) 

might be a particular solution (”) . That this is the case  can be shown with the 

following reasoning. First of all ,  the triangular contours (41) satisfy the end 

conditions (4). Next, the evaluation of the integrals (8) yields the relationships 

(”) The excellent aerodynamic qualities of the bodies of tr iangular c r o s s  

I 
I 

(40) 

I 
I 
m 

(41) I 

I 
I 

section are suggested by the analysis of Ref. 1. 
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so that the Lagrange multipliers (36)  a re  given by 

X1 = 2/3p , X = $/3(1 + p  ) (1 + J 2  1 + p  ) 2 

Then, by direct  substitution into Eq. (38), it can be verified that the assumed 

optimum contour (41) and the associated multipliers (43) reduce this Euler 

equation t o  an identity regardless  of the cross-sectional elongation ratio u. 

Consequently, t he  thickness ra t io  and the l if t- to-drag rat io  become (Figs.  

AAR- 10 

(43 1 

2 and 3) 

Incidentally, the solution obtained maximizes the l if t- to-drag ratio providing the 

Legendre condition 

= -B(B2 + B  - 2  ) -3 [hlQl(B,6)+X2Q2(B,B)+Q3(R,B,B)]~0 
FBB 

is satisfied at every point of the extrema1 a r c .  After Eqs . (40), (4lLand (43) are 

accounted for,  it can be verified that Ineq. (45) is satisfied everywhere if the 

(45) 
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I 

cross-sectional elongation ratio is in  the range 0 u S 0.6511. For larger values 

I 
of the elongation ratio, Ineq . (45) is violated in the  neighborhood of the final point; 

hence, a triangular c ros s  section cannot be optimal in the range 0.651 1 I u 5 1. 

A further investigation is needed and is t o  be presented in a forthcoming report  

(Part 2) .  

I 
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7.  DISCUSSION AND CONCLUSIONS 

In the previous sections, the optimization of the lift-to-drag ra t io  of a slender, 

flat-top, homothetic body flying at hypersonic speeds is presented under the 

assumptions that the pressure  distribution is Newtonian and the skin-friction 

coefficient is constant. 

It is shoivn that a value of the thickness ratio exists which maximizes the 

lift-to-drag ratio; this particular value is such that the friction drag  is one-third 

of the total drag. The subsequent optimization of the longitudinal and t ransversal  

contours is reduced to the extremization of products of powers of integrals related 

to  the lift, the pressure  drag, and the skin-friction drag .  For  the longitudinal 

contour, the variational approach shows that a conical solution is the best .  For  

the t ransversa l  contour, a triangular cross  section satisfies the Euler equation 

for  every cross-sectional elongation ratio u ; it satisfies the  Legendre condition 

for  0 I u 10.6511 but violates it in  the neighborhood of the plane of symmetry for 

0.6511 <US 1. 
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It is of interest to check the lift-to-drag ratios attainable with conical bodies 

of triangular cross  section against those attainable with conical bodies having 

different c ross -  sectional contours, specifically: 

(a 1 B = 1 - (1-u) s i n  0 

m 
(c ) B s i n  F) = IJ (1-B cos  El) 

(d) "1 
where (a) denotes a sinusoidal contour, (b) denotes an  elliptical contour, and 

(c) and (d) a r e  power law contours. Numerical analyses performed at Rice Uni- 

versity with an IBM 7040 Digital Computer show that, for  each given elongation ratio 

in the range 0 < u 5 1, the body of triangular c ros s  section is aerodynamically 

superior to  the bodies (a) and (b). It is also superior  to  the  body (c) regardless  

of the exponent m .  An analogous remark  holds fo r  the body (d) as long as the 

elongation ratio does not approach the  value u = 1.  For  values of u in the 

neighborhood of 1,  an exponent m can be found such that the  l if t- to-drag rat io  of 

the body of triangular c ross  section and that of the body (d) differ  by only the 
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I fourth significant figure. Thus, even though the body of triangular c ros s  section 

does not meet all the requirements of the calculus of variations in the range 

I 0.6511 2 u 5 1, it exhibits excellent aerodynamic characterist ics by comparison 

with the bodies (a) through (d). For this reason, while the present investigation is I 
B t o  be completed in  a forthcoming report, it is probable that the lift-to-drag rat io  

of the t rue  variational solution will not differ substantially from that of the  body of 

tr iangular cross  section. 

In closing, the following comments are pertinent: 

(a) The lift-to-drag ratio of the body of tr iangular c ros s  section increases  I 
3 as the elongation ratio decreases  and achieves its highest value E& = 0.529 

I 

at 1 ~ -  = 0,  corresponding t o  a thickness ratio in T/&- 3 = 0.126. This limiting f 

resul t ,  obviously t o  be interpreted with a grain of salt, means that wing-like 
I 

configurations ra ther  than body- like configurations are aerodynamically desirable 

- 

at hypersonic speeds.  It is c lear  that a practical  vehicle can only be constructed 

by replacing the mathematical solution u = 0 with a neighboring value, for instance, 

u = 0 . 2 .  As Fig. 3 shows, the loss in the lift-to-drag rat io  is small .  
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(b) Thc conical bodies of triangular c ros s  section exhibit sharp  corners  at 

F, = 0 and R = n/2. Hence, their  main drawback is the severe heat t ransfer  occurring 

at the lines of intersection between the surfaces  composing the vehicle. Consequently, 

the present sharp-edge configurations must be replaced by faired configurations in 

which the transistion from one surface t o  another occurs with a finite curvature.  

If this is done, lift-to-drag ratios smal le r  than those predicted here  are t o  be 

expected. 
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LIST OF CAPTIONS 

Fig. 1 Coordinate system. 

Fig. 2 Thickness ratio of conical bodies of triangular c ros s  section. 

Fig. 3 Lift-to-drag ratio of conical bodies of triangular c r o s s  section. 
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